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Abstract: A modif ed conjugate gradient method (MCGM) is proposed for simultaneously reconstructing Robin
coeff cient and heat f ux in an elliptic system from a single part of the boundary measurements of the solution. The
simultaneous identif cation problem is formulated as a constrained optimization problem using the output least
squares method with Tikhonov regularization. The differentiability and adjoint equations are investigated for f nd-
ing the gradient formulas and determining the step lengths, respectively. Finite element method is employed to
discretize the constrained optimization problem which reduced to a sequence of unconstrained optimization prob-
lem by adding the regularization term. Some comparisons are presented with the Levenberg-Marquardt method
proposed by [1]. Numerical examples investigate the eff ciency and accuracy of the proposed algorithm.
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1 Introduction
Ill-posed inverse problem of reconstructing Robin co-
eff cient and heat f ux from transient temperature his-
tories measured in the heat conduction problems and
stationary diffusion equations are constantly of a great
interest during three last decades. A literature review
and a presentation of different method is presented in
[2, 3, 4, 5, 6, 7] and the references therein. Sever-
al numerical methods are proposed for the Robin in-
verse problems in the context of corrosion detection
[8, 9, 10]. [11] employed the nonlinear CGM for
reconstructing the Robin coeff cient with Laplace e-
quation and noted that the convergence was relatively
slowly. Also, used preconditioning technique using
Hilbert space scales and Sobolev gradients for accel-
erating its convergence but did not test it numerically.
[12] introduced an application of conjugate gradient
method for estimation of the wall heat f ux of a su-
personic combustor. [13, 14] introduced the mathe-
matical and numerical justif cation for the reconstruc-
tion of only one parameter Robin coeff cient of the in-
verse problem using the nonlinear conjugate gradient
method.

One of the advantages of the f nite element
method as compared with the f nite difference method
are that complicated geometry, general boundary con-
ditions and variable or non-linear material properties

can be manipulated relatively easily [15, 16, 13, 17].
The f nite element method has a solid theoretical foun-
dation which gives added reliability and in many cases
is able to mathematically analyze and estimate the er-
ror in the approximate f nite element solution [18]. [1]
studied numerically the simultaneous identif cation of
Robin coeff cient and heat f ux using surrogate func-
tional and Levenberg-Marquardt method. Moreover,
there is a little work in the literature on simultaneous
reconstructing Robin coeff cient and heat f ux using
a modif ed conjugate gradient method (MCGM) and
comparison between the two methods are the focus of
this work.

The reset of this paper is organized as follows:
Sections 2 is devoted to describe the variational for-
mulation for the elliptic problem and stability of
the optimization problem. Section 3 brief y derives
the partial Fréchet derivatives of the forward solu-
tion to obtain the gradient of the Robin coeff cien-
t and heat f ux also introduces the adjoint equations
to f nd a simple explicit expressions to simplify com-
puting the minimization equation. Section 4 intro-
duces the f nite element approximation and its conver-
gence. Section 5 discusses the numerical algorithm
using a modif ed conjugate gradient method (MCG-
M). Section 6 introduces some numerical experiments
to present the eff ciency, accuracy, and robustness of
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the proposed method for simultaneously reconstruct-
ing Robin coeff cient and heat f ux in the optimization
problem. Some comparisons presented to illustrate
the eff ciency of the proposed modif ed conjugate gra-
dient method (MCGM) comparing with Levenberg-
Marquardt method.

2 Mathematical formulation

Consider an elliptic system which occupies an open,
bounded, and connected polyhedral domain Ω ⊂ R2

with the boundaries Γi(i = 1, 2, 3) which can be mod-
eled by the following elliptic equation:






































−∇ · (α(x)∇u) + c(x)u = f(x) in Ω,

α(x)∂u
∂n

+ γ(x)u(x) = g(x) on Γ1,

α(x)∂u
∂n

= q(x) on Γ2,

α(x)∂u
∂n

= 0 on Γ3.
(2.1)

Hence α(x) is the heat conductivity and a smooth
boundary ∂Ω consists of three parts i.e. ∂Ω = Γ1 ∪
Γ2∪Γ3 is a f nite collection of disjoint, smooth (d−1)-
dimensional polyhedral domain. The functions α(x)
and c(x) are the heat conductivity and radiation which
be constraint by 0 < α1 < α(x) < α2 and 0 < c1 <
c(x) < c2, respectively. The parameters identif cation
problem γ(x) and q(x) are contained in the follow-
ing constrained sets: Kγ = {γ(x) ∈ L2(Γ1) : 0 <
γ1 ≤ γ(x) ≤ γ2, a.e. on Γ1}, and Kq = {q(x) ∈
L2(Γ2) : 0 < q1 ≤ q(x) ≤ q2, a.e. on Γ2}. Such
that (x, y) denoted by x. Let u solve system (2.1) and
Let u(x) = zδ on Γ3 where zδ is the measurement da-
ta of the exact solution u, the parameter δ is used here
to emphasize the existence of the noise in the mea-
sured data.

This paper aims to justify numerically the valida-
tion and effectiveness of the regularization formula-
tion for solving the ill-posed inverse problem of the
two parameters Robin coeff cient on Γ1 and heat f ux
on Γ2 reconstruction. In addition, we will solve the
nonlinear f nite element minimization problem by us-
ing a modif ed conjugate gradient method for simulta-
neously reconstructing the Robin coeff cient and heat
f ux.

Now, we formulate the considered parameters i-
dentif cation problem as a constrained minimizing
process

min
(γ,q)∈Kγ×Kq

J(γ, q) = ‖u(γ, q) − zδ‖2Γ3
+ β‖γ‖2Γ1

+ η‖q‖2Γ2
, (2.2)

where (γ, q) ∈ Kγ × Kq and u ≡ u(γ, q)(x) ∈
H1(Ω) satisf es
∫

Ω
a∇u · ∇vdx+

∫

Ω
cuvdx+

∫

Γ1

γuvds =

∫

Ω
fvdx

+

∫

Γ1

gvds +

∫

Γ2

qvds ∀ v ∈ H1(Ω).

(2.3)

Note that (2.3) is the variational formulation associat-
ed with the elliptic problem (2.1). For any (γ, q) ∈
Kγ × Kq there exists a unique solution u(γ, q) ∈
H1(Ω) to (2.1)(see, Theorem 2.1 [1]).

To deal with the instability of the inverse prob-
lem, we reformulate it as a constrained minimization
problem (2.2) where u(γ, q) solves the variational for-
mulation (2.3). We assume that, β and η are the reg-
ularization parameters. Furthermore, γ ∈ L∞(Γ1)
in the admissible set Kγ which replaced by γ ∈
L2(Γ1)∩L

∞(Γ1). Suppose that ‖ · ‖H1(Γ1) is def ned
by

‖v‖2H1(Γ1)
= ‖∇v‖2L2(Ω) + ‖v‖2L2(Γ1)

,

which equivalent to the standard norm ‖ · ‖H1(Ω).
Theorem 2.1. There exists at least one minimizer to
the optimization problem (2.2).

Proof. Clearly, inf J(γ, q) is a f nite over the admis-
sible set Kγ ×Kq, and thus there exists a minimizing
sequence (γn, qn) ∈ Kγ ×Kq such that

lim
n→∞

J(γn, qn) = inf
(γ,q)∈Kγ×Kq

J(γ, q). (2.4)

Using Banach-Alaoglu theorem, the boundedness of
the sequence γn in L∞(Γ1) and qn in L∞(Γ2) im-
plies that there exists a subsequence, still denoted by
{(γn, qn)}, and some (γ∗, q∗) ∈ Kγ ×Kq such that

(γn, qn)⇀ (γ∗, q∗) weak convergence in Kγ ×Kq,

Using (2.4), the strong convergence of un in L2(∂Ω),
and lower semicontinuity imply that

J(γ∗, q∗) = ‖u(γ∗, q∗)− zδ‖2Γ3
+ β‖γ∗‖2Γ1

+ η‖q∗‖2Γ2
,

= lim
n→∞

‖u(γn, qn)− zδ‖2Γ3
+ β‖γ∗‖2Γ1

+ η‖q∗‖2Γ2
,

≤ lim
n→∞

‖u(γn, qn)− zδ‖2Γ3

+ β lim
n→∞

inf ‖γn‖2Γ1
+ η lim

n→∞
inf ‖qn‖2Γ2

,

≤ lim
n→∞

inf J(γn, qn)

= inf
(γ,q)∈Kγ×Kq

J(γ, q). (2.5)

Which implies that (γ∗, q∗) is a minimizer of the func-
tional (2.2).
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The stability property of the optimization prob-
lem with respect to the observation errors zδ and the
sequence {(γn, qn)} of the minimizers has a subse-
quence weak convergence in Kγ ×Kq (see, Theorem
3.2 [1]).

3 Differentiability results for the sen-
sitivity and adjoint equations

In this section, we introduce the sensitivity problem-
s and establish the differentiability of the solution
u(γ, q) with respect to the heat f ux q(x) and Robin
coeff cient γ(x). We suppose that the Robin coeff -
cient γ(x) is perturbed by a small amount γ(x) + λ,
and the heat f ux q(x) perturbed by q(x) + ξ, such
that λ and ξ any directions in L∞(Γ1) and L∞(Γ2),
respectively:

u(γ(x)+λ, q) ≈ u(γ, q)+u
′

γ(γ, q)λ+O(‖λ‖2L∞(Γ1)
),

and

u(γ(x), q+ξ) ≈ u(γ, q)+u
′

q(γ, q)ξ+O(‖ξ‖2L∞(Γ2)
).

Then replacing γ in the direct problem by γ(x) + λ,
and u(γ, q) by u(γ(x) + λ, q), subtracting from the
forward problem (2.1), neglecting the second order
terms as well as q(x) are all similarly, we obtain


































































−∇ · (α(x)∇(u
′

γ (γ, q)λ)) + c(x)(u
′

γ(γ, q)λ) = 0

in Ω,

α(x)
∂(u

′

γ (γ,q)λ)

∂n
+ γ(x)(u

′

γ(γ, q)λ) = −λu(γ, q)
on Γ1,

α(x)
∂(u

′

γ (γ,q)λ))

∂n
= 0 on Γ2,

α(x)
∂(u

′

γ (γ,q)λ))

∂n
= 0 on Γ3,

and


































































−∇ · (α(x)∇(u
′

q(γ, q)ξ)) + c(x)(u
′

q(γ, q)ξ) = 0

in Ω,

α(x)
∂(u

′

q(γ,q)ξ)

∂n
+ γ(x)(u

′

q(γ, q)ξ) = 0

on Γ1,

α(x)
∂(u

′

q(γ,q)ξ))

∂n
= ξ on Γ2,

α(x)
∂(u

′

q(γ,q)ξ))

∂n
= 0 on Γ3,

which are linear with respect to λ and ξ, respectively.

Lemma 3.1. For any (γ, q) ∈ Kγ × Kq and the so-
lution u(γ, q) is differentiable with respect to(γ, q) in
the sense that

‖u(γ + λ, q)− u(γ, q) − u
′

γ(γ, q)λ‖H1(Ω)

‖λ‖L∞(Γ1)
→ 0

as λ→ 0 in L∞(Γ1),(3.1)

and

‖u(γ, q + ξ)− u(γ, q)− u
′

q(γ, q)ξ‖H1(Ω)

‖ξ‖L∞(Γ2)
→ 0

as ξ → 0 in L∞(Γ2). (3.2)

Proof. We assume the function w ≡ u(γ + λ, q) −
u(γ, q)− u

′

γ(γ, q) which satisf es






































−∇ · (α∇w) + cw = 0 in Ω,

α∂w
∂n

+ γw = −λ(u(γ + λ, q)− u(γ, q)) on Γ1,

α∂w
∂n

= 0 on Γ2,

α∂w
∂n

= 0 on Γ3,
(3.3)

we obtain the variational form
∫

Ω
α|∇w|2dx+

∫

Ω
c|w|2dx+

∫

Γ1

γ|w|2ds

= −

∫

Γ1

λ(u(γ + λ, q)− u(γ, q))wds. (3.4)

By using Sobolev trace theorem, we derive

‖w‖H1(Ω) ≤ C‖λ‖L∞(Γ1)‖u(γ+λ, q)−u(γ, q)‖H1(Ω).
(3.5)

Also, by replacing u(γ, q) by u(γ + λ, q) into (2.1),
we obtain

∫

Ω
α|∇(u(γ + λ, q)− u(γ, q))|2dx

+

∫

Ω
c|(u(γ + λ, q)− u(γ, q))|2dxnb

+

∫

Γ1

γ|(u(γ + λ, q)− u(γ, q))|2ds

= −

∫

Γ1

λu(γ + λ, q)(u(γ + λ, q)− u(γ, q))ds.(3.6)

Using Sobolev trace theorem, we obtain

‖u(γ + λ, q)− u(γ, q)‖2H1(Ω)

+‖u(γ + λ, q)− u(γ, q)‖2L2(Γ1)

≤ C‖λ‖L∞(Γ1)‖u(γ + λ, q)‖H1(Ω)

‖u(γ + λ, q)− u(γ, q)‖L2(Ω). (3.7)
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Then,

‖u(γ + λ, q)− u(γ, q)‖H1(Ω) ≤

C‖λ‖L∞(Γ1)‖u(γ + λ, q)‖H1(Ω). (3.8)

The proof of Theorem 2.1 indicates that ‖λ‖L∞(Γ1) is
suff ciently small and ‖u(γ+λ, q)‖H1(Ω) is uniformly
bounded. Thus, it follows that

‖u(γ + λ, q)− u(γ, q) − u
′

γ(γ, q)λ‖H1(Ω)

‖λ‖L∞(Γ1)
→ 0

as λ→ 0 in L∞(Γ1).(3.9)

Similarly, for u(γ, q+ξ) we deduce that (3.2) is valid.

From the proof of the Lemma 3.1, we have the
following expansion:

u(γ + λ, q) = u(γ, q) + u
′

γ(γ, q)λ +O(‖λ‖2L∞(Γ1)
),

and

u(γ, q + ξ) = u(γ, q) + u
′

q(γ, q)ξ +O(‖ξ‖2L∞(Γ2)
).

We introduce the adjoint equations for the previous
partial derivatives equations which be associated to
u(γ, q) in any direction d ≡ (u − zδ)|y=1 ∈ L2(Γ3),
and p ≡ (u−zδ)|x=0 ∈ L2(Γ3). We def ne u′

γ(γ, q)
∗d

and u′

q(γ, q)
∗p by solving the following systems



































































−∇ · (α(x)∇(u
′

γ (γ, q)
∗d)) + c(x)(u

′

γ(γ, q)
∗d) = 0

in Ω,

α(x)
∂(u

′

γ (γ,q)
∗d)

∂n
+ γ(x)(u

′

γ(γ, q)
∗d) = 0

on Γ1,

α(x)
∂(u

′

γ (γ,q)
∗d))

∂n
= 0 on Γ2,

α(x)
∂(u

′

γ (γ,q)
∗d))

∂n
= −d on Γ3,

and


































































−∇ · (α(x)∇(u
′

q(γ, q)
∗p)) + c(x)(u

′

q(γ, q)
∗p) = 0

in Ω,

α(x)
∂(u

′

q(γ,q)
∗p)

∂n
+ γ(x)(u

′

q(γ, q)
∗p) = 0

on Γ1,

α(x)
∂(u

′

q(γ,q)
∗p))

∂n
= 0 on Γ2,

α(x)
∂(u

′

q(γ,q)
∗p))

∂n
= p on Γ3.

Theorem 3.1. The objective functionalJ(γ, q) is
Fréchet differentiable and its Fréchet derivative is
∂J(γ,q)

∂γ
, γ ∈ Kγ in the directionλ and Fŕechet deriva-

tive ∂J(γ,q)
∂q

with respect toq ∈ Kq in the directionξ
are given by

∂J

∂γ
[λ] = 2

∫

Γ1

λ[u(γ, q)(u
′

γ(γ, q)
∗d) + βγ]ds,

(3.10)
and

∂J

∂q
[ξ] = 2

∫

Γ2

ξ[(u
′

q(γ, q)
∗p) + ηq]ds. (3.11)

Proof. From Lemma 3.1, noting that

‖u
′

γ(γ, q)λ‖H1(Ω) ≤ C‖λ‖L∞(Γ1)

and
‖u

′

q(γ, q)ξ‖H1(Ω) ≤ C‖ξ‖L∞(Γ2),

we have

min
(γ,q)∈Kγ×Kq

J0(γ, q) =

∫

Γ3

(u(γ, q) − zδ)2ds.

(3.12)
Then, we derive

J0(γ + λ, q)− J0(γ, q) =

∫

Γ3

(u(γ + λ, q)− zδ)2ds

−

∫

Γ3

(u(γ, q) − zδ)2ds,

=

∫

Γ3

(u(γ, q) + u
′

γ(γ, q)λ +O(‖λ‖2L∞(Γ1)
)− zδ)2ds

−

∫

Γ3

(u(γ, q) − zδ)2ds,

= 2

∫

Γ3

(u(γ, q)− zδ)u
′

γ(γ, q)λ +O(‖λ‖2L∞(Γ1)
)ds

+2

∫

Γ3

(u
′

γ(γ, q)λ+O(‖λ‖2L∞(Γ1)
))2ds,

= 2

∫

Γ3

(u(γ, q)− zδ)u
′

γ(γ, q)λds +O(‖λ‖2L∞(Γ1)
).

Then, we obtain

∂J0
∂γ

[λ] = 2

∫

Γ3

(u(γ, q)− zδ)(u
′

γ(γ, q)λ)ds. (3.13)

Similarly, the Fréchet derivative of J0 with respect to
q in the direction ξ shows that

∂J0
∂q

[ξ] = 2

∫

Γ3

(u(γ, q) − zδ)(u
′

q(γ, q)ξ)ds. (3.14)
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By taking ϕ = u
′

γ(γ, q)λ, ψ = u
′

γ(γ, q)
∗d, and mul-

tiplying (3.1) by ψ and (3.10) by ϕ, then we apply
Green’s second identity by subtracting the two equa-
tions

0 =

∫

Ω
{ψ∇ · (α∇ϕ)− ϕ∇ · (α∇ψ)} dx

=

∫

∂Ω

(

α
∂ϕ

∂n
ψ − α

∂ψ

∂n
ϕ

)

ds. (3.15)

By substituting the boundary conditions for ϕ and ψ,
we obtain

∫

Γ1

λu(γ, q)ψds =

∫

Γ3

dϕds. (3.16)

Taking ϕ̃ = u
′

q(γ, q)ξ, ψ̃ = u
′

q(γ, q)
∗p, and multiply-

ing (3.1) by ψ̃ and (3.10) by ϕ̃, then we apply Green’s
second identity

0 =

∫

Ω

{

ψ̃∇ · (α∇ϕ̃)− ϕ̃∇ · (α∇ψ̃)
}

dx

=

∫

∂Ω

(

α
∂ϕ̃

∂n
ψ̃ − α

∂ψ̃

∂n
ϕ̃

)

ds. (3.17)

By substituting the boundary conditions for ϕ̃ and ψ̃,
we obtain

∫

Γ2

ξψ̃ds =

∫

Γ3

pϕ̃ds. (3.18)

By substituting from (3.16) into (3.13), we deduce

∂J

∂γ
[λ] = 2

∫

Γ1

λ
[

u(γ, q)(u
′

γ(γ, q)
∗d) + βγ

]

ds,

(3.19)
such that

∂J0
∂γ

[λ] = 2

∫

Γ1

λu(γ, q)(u
′

γ(γ, q)
∗d)ds.

Similarly, the Fréchet derivative of J0 with respect to
q in the direction ξ, we obtain

∂J

∂q
[ξ] = 2

∫

Γ2

ξ
[

(u
′

q(γ, q)
∗p) + ηq

]

ds, (3.20)

and
∂J0
∂q

[ξ] = 2

∫

Γ2

ξ(u
′

q(γ, q)
∗p)ds.

This completes the proof of Theorem 3.1.

Remark 3.1. The idea of the conventional gradient
∂J
∂q

and ∂J
∂γ

are theL2(Γ2) andL2(Γ1) gradient re-
spectively. which can be defined as follows:

∂J

∂q
[ξ] =

∫

Γ2

ξ
∂J

∂q
ds and

∂J

∂γ
[λ] =

∫

Γ1

λ
∂J

∂γ
ds.

such that the integral refers to duality between
L∞(Γ2) and its dual(L2(Γ2))

′

for the heat fluxq.
and ∂J

∂q
is an element in the dual space(L2(Γ2))

′

. Ac-
cording to the Robin coefficient on the boundaryΓ1

is same. The gradient is used to update an element in
the admissible setKq andKγ .

4 Methodology of the f nite element
technique

Finite element method is a powerful tool and an ef-
fective numerical technique for partial differential e-
quations in engineering and many f elds. The fact
that modern engineers can obtain detailed information
about the structure, thermal, electromagnetic prob-
lems with virtual experiments largely gives credit f -
nite element method. Now, we apply the f nite ele-
ment approximation method for solving the continu-
ous minimization problem (2.2). We triangulate the
polyhedral domain Ω with a regular triangulation T h

of a simplicial elements. Then we def ne the linear
f nite element space Vh by

Vh = {φh ∈ C(Ω) : φh|Ti ∈ F̃ (Ti) ∀ Ti ∈ Th},

such that F̃ (Ti) denotes the space of linear polynomi-
als on the elements Ti. We def ne a restrictions of the
space Vh are V h

Γ1
and V h

Γ2
on Γ1 and Γ2 respectively.

Also, the discrete admissible sets Kh
γ and Kh

q def ned
as follows

Kh
γ = {γh ∈ V h

Γ1
: γ1 ≤ γh(x) ≤ γ2 ∀ x ∈ Γ1},

and

Kh
q = {qh ∈ V h

Γ2
: q1 ≤ qh(x) ≤ q2 ∀ x ∈ Γ2},

where Kh
γ ⊂ Kγ and Kh

q ⊂ Kq, we approximate the
optimization problem (2.2) by the following discrete
minimization system

min
(γh,qh)∈Kh

γ×Kh
2

Jh(γh, qh) =

∫

Γ3

(uh(γh, qh)− zδ)2ds

+β

∫

Γ1

γ2hds+ η

∫

Γ2

q2hds,

(4.1)

where the function uh(γh, qh) ∈ V h satisf es the weak
formulation
∫

Ω
α∇uh · ∇vhdx+

∫

Ω
cuhvhdx+

∫

Γ1

γhuhvhds

=

∫

Ω
fvhdx+

∫

Γ1

gvhds+

∫

Γ2

qhvhds ∀ vh ∈ V h.

(4.2)
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In the following analysis, we need the standard inter-
polation operator Ih : W 1,∞(Ω) → vh and the pro-
jection operator Qh : H1(Ω) → vh is def ned as

∫

Ω
∇Qhw · ∇vhdx+

∫

∂Ω
Qhwvhds

=

∫

Ω
∇w · ∇vhdx+

∫

∂Ω
wvhds

∀ w ∈ H1(Ω) vh ∈ Vh. (4.3)

Then, for any p > d = dim(Ω), we have

lim
h→0

‖Ihw − w‖W 1,∞(Ω) = 0 ∀ w ∈W 1,∞(Ω),

and

lim
h→0

‖Qhw − w‖H1(Ω) = 0 ∀ w ∈ H1(Ω).

The following theorem shows the existence of the
minimizer for the f nite element discretization prob-
lem (4.1).

Theorem 4.1. There exists at least one minimizer to
the finite element problem (4.1).

Proof. Such that minJh(γh, qh) is a f nite over the
admissible set Kh

γ ×Kh
q . Hence, there exists a mini-

mizing sequence {(γh, qh)} ∈ Kh
γ ×Kh

q such that

lim
n→∞

Jh(γ
n
h , q

n
h) = min

(γh,qh)∈Kh
γ×Kh

q

Jh(γh, qh).

The uniform boundedness of {(γh, qh)} in Kh
γ ×Kh

q

and the norm equivalence in the f nite dimensional s-
pace implies that there exists a subsequence denoted
by {(γnh , q

n
h)} and some {(γ∗h, q

∗
h)} in Kh

γ ×Kh
q such

that

{(γnh , q
n
h)}⇀ (γ∗h, q

∗
h) in Kh

γ ×Kh
q , n→ ∞.

Now, we prove that (γ∗h, q
∗
h) is a minimizer of (4.1).

From the def nition of uh(γnh , q
n
h) and uh(γ∗h, q

∗
h), we

have
∫

Ω
α∇uh(γ

n
h , q

n
h) · ∇vhdx+

∫

Ω
cuh(γ

n
h , q

n
h)vhdx

+

∫

Γ1

γnhuh(γ
n
h , q

n
h)vhds =

∫

Ω
fvhdx

+

∫

Γ1

gvhds+

∫

Γ2

qnhvhds ∀ vh ∈ V h,(4.4)

and
∫

Ω
α∇uh(γ

∗
h, q

∗
h) · ∇vhdx+

∫

Ω
cuh(γ

∗
h, q

∗
h)vhdx

+

∫

Γ1

γ∗huh(γ
∗
h, q

∗
h)vhds =

∫

Ω
fvhdx

+

∫

Γ1

gvhds+

∫

Γ2

q∗hvhds ∀ vh ∈ V h.(4.5)

By taking vh = uh(γ
n
h , q

n
h) into (4.4), we see that

‖uh(γ
n
h , q

n
h)‖H1(Ω) ≤ C,

where C is a constant independent on n and h. By
subtracting equation (4.5) from (4.4) and assume that
wn
h ≡ uh(γ

n
h , q

n
h)− uh(γ

∗
h, q

∗
h) gives

∫

Ω
α∇wn

h · ∇vhdx+

∫

Ω
cwn

hvhdx

+

∫

Γ1

(γnhuh(γ
n
h , q

n
h)− γ∗huh(γ

∗
h, q

∗
h)) vhds =

∫

Γ2

(qnh − q∗h) vhds, (4.6)

we can rewrite it as following

∫

Ω
α∇wn

h · ∇vhdx+

∫

Ω
cwn

hvhdx+

∫

Γ1

γnhw
n
hvhds

= −

∫

Γ1

(γnh − γ∗h)uh(γ
∗
h, q

∗
h)vhds

+

∫

Γ2

(qnh − q∗h)vhds.

(4.7)

Then, taking vh = wn
h and using the Cauchy- Schwarz

inequality, and the lower bound of the above assump-
tions, we derive

α0‖∇w
n
h‖

2
L2(Ω) + c0‖w

n
h‖

2
L2(Ω) + γ0‖w

n
h‖

2
L2(Γ1)

≤ ‖γnh − γ∗h‖L∞(Γ1)‖uh(γ
∗
h, q

∗
h)‖L2(Γ1)‖w

n
h‖L2(Γ1)

+‖qnh − q∗h‖L2(Γ2)‖w
n
h‖L2(Γ2).(4.8)

Hence the norm equivalence in the f nite dimension-
al spaces implies that wn

h → 0 (i.e., uh(γnh , q
n
h) →

uh(γ
∗
h, q

∗
h) in H1(Ω) as k → ∞).
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Consequently, we have

Jh(γ
∗
h, q

∗
h) =

∫

Γ3

(uh(γ
∗
h, q

∗
h)− zδ)2dsds

+ β

∫

Γ1

(γ∗h)
2 + η

∫

Γ2

(q∗h)
2ds

≤ lim
n→∞

∫

Γ3

(uh(γ
n
h , q

n
h)− zδ)2ds

+ β lim
n→∞

inf

∫

Γ1

γnh
2ds

+ η lim
n→∞

inf

∫

Γ2

qnh
2ds

≤ lim
n→∞

inf

{
∫

Γ3

(uh(γ
n
h , q

n
h)− zδ)2ds

+ β

∫

Γ1

γnh
2ds+ η

∫

Γ2

qnh
2ds

}

= lim
n→∞

inf Jh(γ
n
h , q

n
h)

= min
(γh,qh)∈Kh

γ×Kh
q

Jh(γh, qh). (4.9)

This show that (γ∗h, q
∗
h) ∈ Kh

γ ×Kh
q is a minimizer of

the discrete optimization problem (4.1).

Lemma 4.1. Let{(γh, qh)} ∈ Kh
γ ×K

h
q be weak con-

vergence to(γ∗, q∗) ∈ Kγ ×Kq ash→ 0, then there
exists a subsequence which denoted by{(γh, qh)},
such that

uh(γh, qh) → u(γ∗, q∗) in L2(Γ3) as h→ 0,

which implies that

lim
n→∞

∫

Γ3

(u(γh, qh)−z
δ
h)

2ds =

∫

Γ3

(u(γ∗, q∗)−zδ)2ds.

Proof. Let vh = uh into (4.2), we obtain
∫

Ω
α|∇uh|

2dx+

∫

Ω
c|uh|

2dx+

∫

Γ1

γh|uh|
2ds

=

∫

Ω
fuhdx+

∫

Γ1

guhds+

∫

Γ2

qhuhds

∀ vh ∈ V h.
(4.10)

Then ‖uh(γh, qh)‖H1(Ω) ≤ C is bounded and C is
constant not depend on h. There exists a convergent
subsequence, still denoted by uh(γh, qh), such that

uh(γh, qh) → u∗ weakly in H1(Ω) as h→ 0.

From the compactness results, this implies

uh(γh, qh) → u∗ strongly in L2(Γ3) as h→ 0.

We show that u∗ ≡ u(γ∗, q∗). For any v ∈ H1(Ω),
let vh = Qhv be a test function, obtain that
∫

Ω
α∇uh · ∇vhdx+

∫

Ω
cuhvhdx+

∫

Γ1

γhuhvhds

=

∫

Ω
fvhdx+

∫

Γ1

gvhds+

∫

Γ2

qhvhds

∀ vh ∈ V h,
(4.11)

such that
∫

Ω
α∇uh · ∇vhdx =

∫

Ω
α∇uh · ∇vdx

+

∫

Ω
α∇uh · ∇(vh − v)dx,

∫

Ω
cuhvhdx =

∫

Ω
cu∗vdx+

∫

Ω
cuh(vh − v)dx

+

∫

Ω
c(uh − u∗)vdx,

∫

Γ1

γhuhvhds =

∫

Γ1

γhu
∗vds +

∫

Γ1

γhuh(vh − v)ds

+

∫

Γ1

γh(uh − u∗)vds,

∫

Ω
fvhdx =

∫

Ω
fvdx+

∫

Ω
f(vh − v)dx.

By the convergence of vh = Qhv, uh(γh, qh) weak
convergence in H1(Ω), and (γh, qh) weak conver-
gence in Kh

γ ×Kh
q as h→ 0, we derive

∫

Ω
α∇u∗ · ∇vdx+

∫

Ω
cu∗vdx+

∫

Γ1

γ∗u∗vds

=

∫

Ω
fvdx+

∫

Γ1

gvds +

∫

Γ2

q∗vds.

(4.12)

Then we conclude that u∗ ≡ u(γ∗, q∗).

The following lemma we will need illustrates the
density result. It has been proved in [13].

Lemma 4.2. C∞(Ω) is weak∗ dense inL∞(Ω).

For any χ ∈ L∞(Ω), there exists an χn ∈
C∞(Ω) such that
∫

Ω
χnϕdx→

∫

Ω
χϕdx ∀ϕ ∈ L1(Ω), n→ ∞.

The following theorem shows that the convergence of
the f nite element solution to the minimizer of the con-
tinuous optimization problem.
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Theorem 4.2. Let {(γ∗h, q
∗
h)} be a sequence of min-

imizers to the discrete minimization problem (4.1).
Then each subsequence of{(γ∗h, q

∗
h)} has a subse-

quence converging to a minimizer of the continuous
optimization problem(2.2).

Proof. From the uniform boundedness of γ∗h in
L∞(Γ1) and q∗h in K2 implies that there exists a
subsequence, also denoted by {(γ∗h, q

∗
h)}, and some

{(γ∗, q∗)} such that

γ∗h → γ∗ weak ∗ in L∞(Γ1) as h→ 0,

q∗h → q∗ weak ∗ in L∞(Γ2) as h→ 0,

and Lemma 4.1 implies that

uh(γ
∗
h, q

∗
h) → u(γ∗, q∗) in L2(Γ3).

For any (γ, q) ∈ Kγ×Kq and let ε > 0, from Lemma
4.2 there exists a (γε, qε) ∈ C∞(Γ1)× C∞(Γ2) such
that

(γε, qε) → (γ, q) weak in Kγ ×Kq.

For any (γε, qε) ∈ Kγ × Kq, let (γεh, q
ε
h) =

(Qhγ
ε, Qhq

ε) ∈ Kh
γ × Kh

q . The property of inter-
polation operator Qh implies that

lim
h→0

‖uh(γ
ε
h, q

ε
h)− u(γ, q)‖L2(Γ3) = 0.

We derive that (γ∗h, q
∗
h) is the minimizer of J over

Kh
γ ×Kh

q

Jh(γ
∗
h, q

∗
h) =

∫

Γ3

(uh(γ
∗
h, q

∗
h)− zδ)2ds+ β

∫

Γ1

(γ∗h)
2ds

+ η

∫

Γ2

(q∗h)
2ds,

≤

∫

Γ3

(uh(γ
ε
h, q

ε
h)− zδ)2ds+ β

∫

Γ1

(γεh)
2ds

+ η

∫

Γ2

(qεh)
2ds,

= Jh(γ
ε
h, q

ε
h) = Jh(Qhγ

ε, Qhq
ε). (4.13)

Then from Lemma 4.1 and the convergence property

of the interpolation operator Qh

J(γ∗, q∗) =

∫

Γ3

(u(γ∗, q∗)− zδ)2ds+ β

∫

Γ1

(γ∗)2ds

+ η

∫

Γ2

(q∗)2ds,

≤ lim
h→0

∫

Γ3

(uh(γ
∗
h, q

∗
h)− zδ)2ds

+ lim
h→0

inf[β

∫

Γ1

(γ∗h)
2ds+ η

∫

Γ2

(q∗h)
2ds],

≤ lim
h→0

inf Jh(γ
∗
h, q

∗
h),

≤ lim
h→0

inf Jh(Qhγ
ε, Qhq

ε),

≤

∫

Γ3

(uh(γ
ε, qε)− zδ)2ds+ β

∫

Γ1

(γε)2ds

+ η

∫

Γ2

(qε)2ds. (4.14)

By assuming ε→ 0, we obtain

J(γ∗, q∗) ≤ J(γ, q) ∀ (γ, q) ∈ Kγ ×K2,

which indicates that (γ∗, q∗) is a minimizer of the
functional J(γ, q).

5 Numerical algorithm using an M-
CGM

In this section, we describe the MCGM for the
numerical solution of the minimization problem to
identify the two parameters Robin coeff cient and heat
f ux, simultaneously. Each iteration requires solving
two sensitivity and two adjoint equations to compute
the gradient formulas with respect to γ and q. The
idea of the modif cation in CGM is summarized as
follows: The given initial guess (γ0, q0) helps for
computing the heat f ux qk+1 (i.e., qk+1 computed
by (γk, qk)), while the heat transfer coeff cient γk+1

is computed by (γk, qk+1) as shown in the following
algorithm. MCGM stops when the reconstructions
are accurate enough or satisfy the stopping criteria.

Algorithm 5.1.
a- Choose the initial guess(γ0, q0), directions
(d0q , d

0
γ), and setk := 0.

b- Solve the forward problem (2.1)u(γk, qk) and com-
pute the residualrkq

rkq = u(γk, qk)− zδ on Γ3.

c- Solve the adjoint equation (3.10)
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d- Determine the gradient∂J(γ
k ,qk)

∂q
such that

∂J(γk, qk)

∂q
= 2(u

′

q(γ
k, qk)∗p+ ηqk).

e- The conjugate coefficientβkq is given by

βkq =
‖∂J(γk, qk)/∂q‖2

L2(Γ2)

‖∂J(γk−1, qk−1)/∂q‖2
L2(Γ2)

.

f- Compute the descent direction with respect to
q(x, y)

dk+1
q = −

∂J(γk, qk)

∂q
+ βkq d

k
q .

g- Solve the sensitivity equationu
′

q(γ
k, qk)ξ in (3.1).

h- Compute the step lengthαk
q

αk
q = −

〈rk, u
′

q(γ
k, qk, dk+1

q )〉L2(Γ3) + η〈qk, dk+1
q 〉L2(Γ2)

‖u′

q(γ
k, qk, dk+1

q )‖2
L2(Γ3)

+ η‖dk+1
q ‖2

L2(Γ2)

.

(5.1)
i- Update the heat fluxq(x, y) by

qk+1 = qk + αkd
k+1
q .

j- Solve the forward problem (2.1)u(γk, qk+1) and
computerkγ

rkγ = u(γk, qk+1)− zδ on Γ3.

k- Solve the adjoint problemu
′

γ(γ
k, qk+1)∗d in (3.10)

l- Determine the gradient∂J(γ
k ,qk+1)
∂γ

such that

∂J(γk, qk+1)

∂γ
= 2(u(γk, qk+1)(u

′

γ(γ
k, qk+1)∗d)+βγk).

m- The conjugate coefficientβkγ given by

βkγ =
‖∂J(γk, qk+1)/∂γ‖2

L2(Γ1)

‖∂J(γk−1, qk+1)/∂γ‖2
L2(Γ1)

.

n- Compute the descent direction forγ(x, y)

dkγ = −
∂J(γk, qk+1)

∂γ
+ βkq d

k
q .

o- Solve the sensitivity equationu
′

γ(γ
k, qk+1)λ in

(3.1).

p- Computeαk
γ

αk
γ = −

〈rk, u
′

γ(γ
k, qk+1, dk+1

γ )〉L2(Γ3) + β〈γk, dk+1
γ 〉L2(Γ1)

‖u′

γ(γ
k, qk+1, dk+1

γ )‖2
L2(Γ3)

+ β‖dk+1
γ ‖2

L2(Γ1)

.

(5.2)

q- Update the Robin coefficientγk by

γk+1 = γk + αk
γd

k+1
γ .

r- If
‖qk+1−qk‖

L2(Γ2)

‖qk‖
L2(Γ2)

≤ ε1, and
‖γk+1−γk‖

L2(Γ1)

‖γk‖
L2(Γ1)

≤ ε2

Stop; otherwisek := k + 1, and go to Step 2.

The step lengths αk
q and αk

γ are determined by the
quadratic approximation of a two-variable functional.
By using the mean value theorem and Taylor expan-
sion, we can derive the forward operator u(γ, q) with
respect to γ, and q as shown in equations (5.1) and
(5.2) to determine the step lengths αk

q and αk
γ , respec-

tively. For determining the step lengths αk
q and αk

γ ,
this requires solving two auxiliary and adjoint equa-
tions for every iteration. The considered numerical
examples in the present study and previous studies of
inverse problems [19, 13] prove that the step lengths
work very well.

6 Numerical experiments and dis-
cussions

In this section, we will execute the proposed algorithm
5.1 to simultaneously reconstruct the parameters heat
f ux and Robin coeff cient in the optimization problem
(2.1). The considered solution domain Ω is a rectan-
gular as Ω = (0, 1) × (0, 2) which discretized using
triangular mesh such that each small rectangular is di-
vided to two triangles as a f nite element triangulation.
We have the domain boundary consists of three parts
Γ1 = {(x, y) : x = 1, 0 ≤ y ≤ 2}, Γ2 = {(x, y) :
y = 0, 0 ≤ x ≤ 1}, and Γ3 = ∂Ω \ (Γ1 ∪ Γ2). We
solve the forward problem using the continuous linear
f nite element method and the exact data can obtain
from the exact solution. To verify the issue of robust-
ness and sensitivity for the reconstruction algorithm
against the noise in the data, we introduce some mul-
tiplicative noise to the data zδ along Γc in the time do-
main: zδ = u+ δRu on Γc× (0, T ), where R a uni-
formly distributed random variable varying in [−1, 1],
and δ is the noise level. We will apply δ = 5% in
our numerical tests unless specif ed otherwise. As-
sume that the regularization parameters β = 10−4

and η = 10−3 are chosen according to the theory of
residues due to Morozov (see, [20]) and two tolerance
parameters ε1 = ε2 = 2× 10−3. Furthermore, we set
the initial directions (d0q , d0γ) to be zeros vectors.
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Now, we introduce f ve numerical examples for
reconstructing the unknown parameters in the elliptic
system (2.1), and assume that α(x) = c(x) = 1. For
example, we assume the exact solution for the forward
problem (2.1) is given by

u(x, y) = x · cos(πy) + y · sin(πx),

Table 1 and Figs. 1, 2 present the convergence rate for
the numerical solution of the forward problem. We as-
sume that the source function for all examples is given
by

f(x) = (π2 + 1) cos(πy) + yx2 − 3 in Ω,

and the boundary temperature is given by

g(x) = cos(πy + 1)γ(x) + 2 on Γ1.

Remark 6.1. The relative error of Robin coefficient is

defined byREγ =
‖γk−γ‖

L2(Γ1)

‖γ‖
L2(Γ1)

and relative error of

heat flux is defined byREq =
‖qk−q‖

L2(Γ2)

‖q‖
L2(Γ2)

where the

accuracy error is defined by the relative error.

Example 6.1. Consider the exact heat flux is given by
q(x) = −x+3 on Γ2, exact Robin coefficientγ(x) =
2−(y−1)4 on Γ1, and initial guess(γ0, q0) = (2, 32 )

• In this example we notice that the relative error
of Robin coeff cient decrease gradually with in-
creasing the number of iterations and relative er-
ror of heat f ux is regular with k.

• The obtained numerical results in Table 2 lead
to the accuracy of the proposed algorithm for si-
multaneous reconstructing Robin coeff cient and
heat f ux in Example 6.1.

Example 6.2. Consider the heat flux is given by
q(x) = 1

2(x − 1)2 + 2 on Γ2, exact Robin coeffi-
cient is given byγ(x) = 3

4(y− 1)4 + 5
2 on {(x, y) ∈

Γ1; 0 ≤ y ≤ 1}, γ(x) = −3
4 (y−1)4+ 5

2 on {(x, y) ∈

Γ1; 1 ≤ y ≤ 2}, and initial guess(γ0, q0) = (52 , 2).

Fig.4 shows the exact and numerical reconstruction
of Robin coeff cient and heat f ux such that REγ =
0.028, REq = 0.0148, and k = 5 at δ = 0.02 noise in
the data as shown in Table 2.

Example 6.3. Consider the exact heat flux is given by
q(x) = −2

5(x − 1)2 + 2 on Γ2. The exact Robin
coefficient is given byγ(x) = 1 + 1

5(y − 1)2 on Γ1

and initial guess is given by(γ0, q0) = (1, 52).

Fig.5 shows the exact and numerical reconstruc-
tion Robin coeff cient and heat f ux such that REγ =
0.0238, REq = 0.0148, and k = 8 at the noise level
δ = 0.02.

Example 6.4. Consider the exact heat fluxq(x) =
−x + 3 on Γ2, the Robin coefficient is given by
γ(x) = 4 − (y − 1)2 on Γ1, and the initial guess
(γ0, q0) = (4, 32 ).

Fig.6 shows the behaviour and performance of γ
and q with the exact solutions. In addition, the relative
errors are given by REγ = 0.0257, REq = 0.020, and
k = 5 at δ = 0.02.

Example 6.5. Assume that the exact heat flux is given
by q(x) = −x + 3 on Γ2, the Robin coefficient is
given byγ(x) = 3 − (y − 1)4 on {(x, y) ∈ Γ1; 0 ≤
y ≤ 1}, γ(x) = 3 + (y − 1)4 on {(x, y) ∈ Γ1; 1 ≤
y ≤ 2}, and initial guess(γ0, q0) = (3, 32).

By increasing the number of elements Nel and ap-
plying for any example such as Example 6.4. Then,
we f nd that the numerical results in Table 4 and Fig.
7 are very stable and accurate. The numerical result-
s show that the initial guess of Robin coeff cient and
heat f ux depend on the given functions of γ(x) and
q(x), respectively. Fig. 9 shows the numerical results
for Example 6.1, such that decreasing the noise in the
data gradually leads to increase the accuracy of the
reconstruction heat f ux and Robin coeff cient accord-
ingly. Table 2 declares that the proposed approach is
convergent with respect to the noise in data for the all
examples, this is more clearly seen in Figs. 9 and 10
for reconstructing the two parameters, simultaneously.
The numerical reconstruction of the two parameter-
s remain very steady and reasonable according to the
noise level to 5%. We notice that, the results for the
continuous functions are more accuracy about the dis-
continuous cases i.e. the smooth functions are adapted
with the optimization problem (2.2). Tables 2 and 3
are presented to illustrate the eff ciency and accuracy
of the Levenberg-Marquardt method in addition to nu-
merical convergence of the method. Fig. 11 shows the
stability and accuracy of the modif ed conjugate gra-
dient algorithm, such that the accuracy error decreases
gradually with increasing the number of iterations.
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Table 1: The convergence rate of the numerical solu-
tion of (2.1).

Nel REsol

128 0.3121
512 0.1227

2048 0.0529
8192 0.0243

32768 0.0116
131072 0.0057

Table 2: Numerical results for the parameters identif -
cation using MCGM and L-M method.

MCGM δ k REγ REq

Example 6.1 0.01 5 0.0146 0.0215
Example 6.2 0.01 4 0.0209 0.0217
Example 6.3 0.01 7 0.0139 0.0154
Example 6.4 0.01 5 0.0247 0.0185
Example 6.5 0.01 4 0.0135 0.0078
Example 6.1 0.02 5 0.0146 0.0216
Example 6.2 0.02 5 0.028 0.0148
Example 6.3 0.02 8 0.0238 0.0148
Example 6.4 0.02 5 0.0257 0.020
Example 6.5 0.02 3 0.0201 0.0109
L-M method δ k REγ REq

Example 6.1 0.01 14 0.0681 8.194e-004
Example 6.2 0.01 16 0.0387 0.0015
Example 6.3 0.01 12 0.0345 5.886e-004
Example 6.4 0.01 14 0.0391 0.0026
Example 6.5 0.01 17 0.0326 5.878e-004
Example 6.1 0.02 15 0.0676 6.763e-004
Example 6.2 0.02 16 0.0354 0.0015
Example 6.3 0.02 12 0.0416 7.213e-004
Example 6.4 0.02 14 0.0382 0.0027
Example 6.5 0.02 17 0.0330 5.371e-004

Table 3: Numerical results for the parameters iden-
tif cation at 3% and 5% noise in the data by L-M
method.

Example δ k REγ REq J

6.1 0.03 17 0.0688 5.84e-004 0.0856
6.2 0.03 17 0.0321 0.0016 0.0568
6.3 0.03 13 0.0505 8.36e-004 0.0418
6.4 0.03 14 0.0379 0.0028 0.0806
6.5 0.03 18 0.0350 5.00e-004 0.0846
6.1 0.05 35 0.0913 0.0021 0.1644
6.2 0.05 20 0.0317 0.0022 0.1183
6.3 0.05 38 0.1172 0.0031 0.0920
6.4 0.05 15 0.0381 0.0032 0.1553
6.5 0.05 20 0.0444 7.19e-004 0.1606

Table 4: Numerical results for Example 6.5 in the case
of increasing the number of elements Nel by MCGM.

Nel k REγ REq Nel k REγ REq

1408 4 0.024 0.007 614 5 0.028 0.008
1824 4 0.028 0.006 835 6 0.027 0.011
2584 5 0.02 0.017 998 5 0.028 0.011
3952 5 0.026 0.005 1184 6 0.025 0.01

Figure 1: Exact solution (left) and numerical solution
(right) with Nel = 131072.
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Figure 2: The difference between the exact and nu-
merical solution for u(x, y) = x · cos(πy) + y ·
sin(πx), REsol = 0.0057.
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Figure 3: Exact and numerical reconstruction γ(x)
(left) and q(x) (right) for Example 6.1 at Nel = 784
by MCGM and L-M method.
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Figure 4: Exact and numerical reconstruction γ(x)
(left) and q(x) (right) for Example 6.2 at Nel = 784
by MCGM and L-M method.
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Figure 5: Exact and numerical reconstruction γ(x)
(left) and q(x) (right) for Example 6.3 at Nel = 784
by MCGM and L-M method.
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Figure 6: Exact and numerical reconstruction γ(x)
(left) and q(x) (right) for Example 6.4 at Nel = 784
by MCGM and L-M method.
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Figure 7: Exact and numerical reconstruction γ(x)
(left) and q(x) (right) by Algorithm 5.1 for Example
6.5 at Nel = 11840 and δ = 0.02.
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Figure 8: Exact and numerical reconstruction γ(x)
(left) and q(x) (right) for Example 6.5 at Nel = 784
by MCGM and L-M method.
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Figure 9: Exact and numerical reconstruction γ(x)
(left) and q(x) (right) by Algorithm 5.1 for Example
6.1 with various levels of noise δ ∈ [0.01, 0.05].
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Figure 10: Exact and numerical reconstruction γ(x)
(left) and q(x) (right) by Algorithm 5.1 for Exam-
ple 6.5 with various levels of noise in the data δ ∈
[0.01, 0.05].
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Figure 11: Convergence of the method for Example
6.1 with δ = 1% noise in the data.

7 Concluding remarks

In this work, we studied the nonlinear inverse prob-
lem of simultaneous identifying the Robin coeff cient
and heat f ux. We used the philosophy of the conju-
gate gradient method to simultaneous identifying two
parameters. We derived the partial Fréchet derivatives
of the forward solution to obtain the gradient formulas
of the Robin coeff cient and heat f ux . Furthermore,
introduced the adjoint equations to determine the step
lengths. The f nite element approximation and its nu-
merical and analysis convergence is investigated. We
presented the numerical algorithm in details using the
modif ed conjugate gradient method (MCGM) in ad-
dition to the idea of the modif cation. The foregoing
numerical results and experiments with various levels
of noise indicate that the proposed algorithm MCG-
M is very stable and eff cient for simultaneously re-
constructing the two parameters heat f ux and Robin
coeff cient. Moreover, they appear quite satisfacto-
ry in spite of the highly ill-posedness of the nonlin-
ear inverse and discontinuity problem. We presented
the numerical results by using Levenberg-Marquardt
method with various levels of the noise to verify the
robustness and eff ciency of the method. The compari-
son between the two methods MCGM and Levenberg-
Marquardt methods in the work of [1] is investigated.
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